Wednesday, July 17, 2013

Perkembangan Ilmu Pengetahuan




Ilmuwan yang berpikir filsafati, diharapkan bisa memahami filosofi kehidupan, mendalami unsur-unsur pokok dari ilmu yang ditekuninya secara menyeluruh sehingga lebih arif dalam memahami sumber, hakikat dan tujuan dari ilmu yang ditekuninya, termasuk pemanfaatannya bagi masyarakat. Untuk mencapai tujuan itu, maka proses pendidikan hendaknya bukan sekedar untuk mencapai suatu tujuan akhir tapi juga mem-pelajari hal-hal yang dilakukan untuk mencapai tujuan akhir tersebut. Sehingga, ilmuwan selain sebagai orang berilmu juga memiliki kearifan, kebenaran, etika dan estetika. Secara epistemologis dapat dikatakan bahwa ilmu pengetahuan yang ada saat ini merupakan hasil dari akumulasi pengetahuan yang terjadi dengan pertumbuhan, pergan-tian dan penyerapan teori. Kemunculan teori baru yang menguatkan teori lama akan memperkuat citra sains normal.
Tetapi, anomali dalam riset ilmiah yang tidak bisa dise-lesaikan oleh paradigma yang menjadi referensi riset, menyebabkan berkembangnya paradigma baru yang bisa memecahkan masalah dan membimbing riset berikutnya (mela-hirkan revolusi sains). Tumbuh kembangnya teori dan pergeseran paradigma adalah po-la perkembangan yang biasa dari sains yang telah matang. Berkembangnya peralatan analisis juga mendorong semakin berkembangnya ilmu. Contoh epistemologi ilmu dimana terjadi perubahan teori dan pergeseran paradigma terlihat pada perkembangan teori atom, teori pewarisan sifat dan penemuan alam semesta. Dalam perkembangan ilmu, suatu kekeliruan mungkin terjadi terutama saat pembentukan paradigma baru. Tetapi, yang harus dihindari adalah melakukan kesalahan yang lalu ditutupi dan diakui sebagai kebenaran. · Perkembangan teori atom Konsep atom dicetuskan oleh Leucippus dan Democritus (abad ke-6 SM): materi (segala sesuatu di alam) secara fisik disusun oleh sejumlah benda berukuran sangat kecil (atom). Atom merupakan partikel yang sangat kecil, padat dan tidak bisa dibagi, bergerak dalam ruang dan bersifat abadi. Menurut John Dalton (1766–1844) setiap unsur kimia dibentuk oleh partikel yang tak bisa diurai (atom). Pergeseran paradigma terjadi ketika ternyata dibuktikan bahwa atom masih bisa dibagi dan memiliki elektron (J.J. Thomson,1856–1940) dan proton (E. Goldstein, 1886).
Pengetahuan bahwa atom bisa dibagi membuat ilmuwan lalu mereka-reka struktur atom. Thomson, menganalogikan atom seperti roti tawar dengan kismisnya, dimana elektron dan partikel positif terdistribusi merata. Dari penelitian E. Rutherford (1871-1937) disimpulkan bahwa elektron mengorbit mengelilingi nukleus. Postulat ini diperbaiki oleh J. Chadwick (1891–1974): atom memiliki sebuah inti yang terdiri dari nuklei, dan elektron-elektron yang mengorbit mengelilinginya; dan lalu disempurnakan oleh Niels Bohr yang mempertimbangkan efek kuantisasi energi atom. Teori-teori atom dan strukturnya masih terus disempurnakan. Saat ini mulai terjadi anomali yang menggugat paradigma yang sudah ada. Murray Gell-Mann (1964) mengatakan, proton dan netron masih bisa dibagi menjadi quark. · Perkembangan teori pewarisan sifat Pemikiran tentang pewarisan sifat sudah ada sejak jaman dulu. Plato dengan paham esensialismenya menjelaskan, setiap orang merupakan bayangan dari tipe ideal. Esensinya, manusia adalah sama dan keragaman di dunia tidak ada artinya. Perkembangan teori ini diawali dengan dilema yang dihadapi Darwin: apa penyebab variasi dan apa yang mempertahankan variasi? Menurut F. Galton, setiap anak menuju kecenderungan rata-rata dari sifat induknya. Sifat-sifat hereditas konti-nyu dan bercampur, anak adalah rata-rata dari kedua orang tua, maka variasi tidak ada. Sementara menurut Darwin, keragamanlah yang penting, bukan rata-rata tetapi Darwin belum bisa menjelaskan mengapa keragaman tersebut bisa terjadi. Hipotesa sementaranya menjelaskan bahwa kopi sel dari setiap jaringan yang dimasukkan ke dalam darah (gemmules)-lah yang memproduksi keragaman ketika gemmule dibentuk dan dikonversi kembali menjadi sel tubuh pada saat reproduksi. Tapi, perjalanan sejarah ilmu perkembangan sel selanjutnya membuktikan bahwa hipotesis ini salah. Mendell yang melakukan persilangan kacang dan menghasilkan varietas yang berbeda, mulus dan keriput tapi tidak ada yang di tengah-tengah, menyimpulkan bahwa sifat-sifat yang diturunkan bersifat diskrit, ada yang dominan dan ada yang resesif, tapi tidak bisa bercampur. Teori inilah yang selanjutnya digunakan sebagai dasar pe-ngembangan teori pewarisan sifat. · Perkembangan teori tata surya Prediksi peredaran matahari, bintang, bulan dan gerhana sudah dilakukan bangsa Baylonia, 4000 tahun yang lalu. Kosmologi Yunani (4SM) menyatakan bumi pusat dan semua benda langit mengitari bumi. Konsep ini dipatahkan Copernicus (1473-1543) yang menyatakan bahwa matahari adalah pusat sistem tata surya dan bumi bergerak mengelinginya dalam orbit lingkaran.

Sumber : http://id.shvoong.com/humanities/philosophy/1787020-perkembangan-ilmu-pengetahuan/

The Evolution of Computer




The computer evolution is indeed an interesting topic that has been explained in some different ways over the years, by many authors.  According to The Computational ScienceEducation Project, US, the computer has evolved through the following stages:  

The Mechanical Era (1623-1945)
Trying to use machines to solve mathematical problems can be traced to the early 17th century. Wilhelm Schickhard, Blaise Pascal, and Gottfried Leibnitz were among mathematicians who designed and implemented  calculators that were capable of addition,subtraction, multiplication, and division included.
 
The first multi-purpose or  programmable computing device was probably Charles Babbage's Difference Engine, which was begun in 1823 but never completed. In 1842, Babbage designed a more ambitious machine, called the Analytical Engine but unfortunately it also was only partially completed.  Babbage, together with Ada Lovelace recognized several important programming techniques, including conditional branches, iterative  loops and index variables.    Babbage designed the machine which is arguably the first to be used in computational science. In 1933, George Scheutz  and his son, Edvard began work on a smaller version of the difference engine and by 1853 they had constructed a machine that could process  15-digit numbers and calculate fourth-order differences.   
The US Census Bureau was one of the first organizations to use the mechanical
computers which used punch-card equipment designed by Herman Hollerith to tabulate data for the 1890 census. In 1911 Hollerith's company merged with a competitor to found the
corporation which in 1924 became International Business Machines (IBM).

First Generation Electronic Computers (1937-1953)
These devices used electronic switches, in the form of vacuum tubes, instead of
electromechanical relays.  The earliest attempt to build an electronic computer was by J. V.
Atanasoff, a professor of physics and mathematics at Iowa State in 1937. Atanasoff set out to
build a machine that would help his graduate  students solve systems of partial differential
equations. By 1941 he and graduate student Clifford Berry had succeeded in building a machine that could solve 29 simultaneous  equations with 29 unknowns. However, the
machine was not programmable, and was more of an electronic calculator. 

A second early electronic machine was Colossus, designed by Alan Turing for the British
military in 1943.  The first general purpose  programmable electronic computer was the Electronic Numerical Integrator and Computer (ENIAC), built by J. Presper Eckert and John V. Mauchly at the University of Pennsylvania. Research work began in 1943, funded by the Army Ordinance Department, which needed a way to compute ballistics during World War II. The machine was completed in 1945 and it was used extensively for calculations during the design of the hydrogen bomb.  Eckert, Mauchly, and John von Neumann, a consultant to the ENIAC project, began work on a new machine before ENIAC was finished. The main contribution of EDVAC, their new project, was the notion of a stored program.  ENIAC was controlled by a set of external switches and dials; to change the program required physically altering the settings on these controls. EDVAC was able to run orders of magnitude faster than ENIAC and by storing instructions in  the same medium as data, designers could concentrate on improving the internal structure of the machine without worrying about matching it to the speed of an external control.  Eckert and Mauchly later designed what was arguably the first commercially successful  computer, the UNIVAC; in 1952.  Software technology during this period was very primitive.

Second Generation (1954-1962)
The second generation witnessed several important developments at all  levels of computer
system design, ranging from the technology used to build the basic circuits to the
programming languages used to write scientific applications.  Electronic switches in this era
were based on discrete diode and transistor technology with a  switching time of
approximately 0.3 microseconds. The first machines to be built with this technology include
TRADIC at Bell Laboratories in 1954 and TX-0 at MIT's Lincoln  Laboratory.  Index
registers were designed for controlling loops and floating point units for calculations based
on real numbers.
A number of high level programming languages were introduced and these include
FORTRAN (1956), ALGOL (1958), and COBOL (1959). Important commercial machines of
this era include the IBM 704 and its successors, the 709 and 7094.  In the 1950s the first two
supercomputers were designed specifically for numeric processing in scientific applications. 

Third Generation (1963-1972)
Technology changes in this generation include the use of integrated circuits, or ICs
(semiconductor devices with several transistors built into one physical component),
semiconductor memories, microprogramming as  a technique for efficiently designing
complex processors and the introduction of operating systems and time-sharing.  The first ICs were based on small-scale integration (SSI) circuits, which had around 10 devices per circuit (or ‘chip’), and evolved to the use of medium-scale integrated (MSI) circuits, which had up to 100 devices per chip. Multilayered printed circuits were developed and core memory was replaced by faster, solid state memories.

In 1964, Seymour Cray developed the CDC 6600, which was the first architecture to use
functional parallelism. By using 10 separate functional units that could operate
simultaneously and 32 independent memory  banks, the CDC 6600 was able to attain a
computation rate of one million floating point operations per second (Mflops).  Five years
later CDC released the 7600, also developed  by Seymour Cray. The CDC 7600, with its
pipelined functional units, is considered to be the first vector processor and was capable of
executing at ten Mflops. The IBM 360/91, released during the same period, was roughly
twice as fast as the CDC 660. 

Early in this third generation, Cambridge  University and the University of London
cooperated in the development of CPL (Combined Programming Language, 1963). CPL was,
according to its authors, an attempt to capture only the important features of the complicated and sophisticated ALGOL. However, like ALGOL, CPL was large with many features that
were hard to learn. In an attempt at further  simplification, Martin Richards of Cambridge
developed a subset of CPL called BCPL (Basic Computer Programming Language, 1967). In
1970 Ken Thompson of Bell Labs developed yet another simplification of CPL called simply
B, in connection with an early implementation of the UNIX operating system. comment): 

Fourth Generation (1972-1984)
Large scale integration (LSI - 1000 devices per chip) and very large scale integration (VLSI -
100,000 devices per chip) were used in the construction of the fourth generation computers. 
Whole processors could now fit onto a single chip, and for simple systems the entire
computer (processor, main memory, and I/O controllers) could fit on one chip. Gate delays
dropped to about 1ns per gate.  Core memories were replaced by semiconductor memories. 
Large main memories like CRAY 2 began to replace the older high speed vector processors,
such as the CRAY 1, CRAY X-MP and CYBER   

In 1972, Dennis Ritchie developed the C language from the design of the CPL and
Thompson's B. Thompson and Ritchie then used C to write a version of UNIX for the DEC
PDP-11.   Other developments in software include very high level languages such as FP
(functional programming) and Prolog (programming in logic).

IBM worked with Microsoft during the 1980s to start what we can really call PC (Personal
Computer) life today.  IBM PC was introduced in October 1981 and it worked with the
operating system (software) called ‘Microsoft Disk Operating System (MS DOS) 1.0. 
Development of MS DOS began in October 1980 when IBM began searching the market for
an operating system for the then proposed IBM PC and major contributors were Bill Gates,
Paul Allen and Tim Paterson.  In 1983, the Microsoft Windows was announced and this has
witnessed several improvements and revision over the last twenty years.    

Fifth Generation (1984-1990)
This generation brought about the introduction of machines with hundreds of processors t
could all be working on different parts of  a single program. The scale of integration
semiconductors continued at a great pace and by 1990 it was possible to build chips wit
million components - and semiconductor memories became standard on all comput
Computer networks and single-user workstations also became popular.  

Parallel processing started in this generation.  The Sequent Balance 8000 connected up to
processors to a single shared memory module though each processor had its own local cac
The machine was designed to compete with the DEC VAX-780 as a general purpose U
system, with each processor working on a different user's job. However Sequent provide
library of subroutines that would allow programmers to write programs that would use m
than one processor, and the machine was widely used to explore parallel algorithms a
programming techniques.  The Intel iPSC-1, also known as ‘the hypercube’ connected e
processor to its own memory and used a network interface to connect processors. T
distributed memory architecture meant memory was no longer a problem and large syste
with more processors (as many as 128) could be built. Also introduced was a machi
known as a data-parallel or SIMD where there were several thousand very simple process
which work under the direction of a single control unit.  Both wide area network (WAN) a
local area network (LAN) technology developed rapidly.

Sixth Generation (1990 - Now)
Most of the developments in computer systems since 1990 have not been fundamen
changes but have been gradual improvements  over established systems.  This generat
brought about gains in parallel computing in both the hardware and in improv
understanding of how to develop algorithms to exploit parallel architectures.  Workstation technology continued to improve, with processor designs now using a combination of RISC, pipelining, and parallel processing.   Wide area networks, network bandwidth and speed of operation and networking capabilities have kept developing tremendously.  Personal computers (PCs) now operate with Gigabit per second processors, multi-Gigabyte disks, hundreds of Mbytes of RAM, colour printers, high-resolution graphic monitors, stereo sound cards and graphical user interfaces.  Thousands of software (operating systems and application software) are existing  today and Microsoft Inc. has been a major contributor.  Microsoft is said  to be one of the biggest companies ever, and its chairman – Bill Gates has been rated as the richest man for several years.

Finally, this generation has brought about micro controller technology.  Micro controllers are ’embedded’ inside some other devices (often consumer products) so that they can control the features or actions of the product.  They work as small computers  inside devices and now serve as essential components in most machines.


sumber: http://tkjsmkn1bengkayang-artikel.blogspot.com/

Universitas Muhammadiyah Malang




Universitas Muhammadiyah Malang (UMM) adalah perguruan tinggi swasta terakreditasi "A" dengan Nomor SK: 074/SK/BAN-PT/Ak-IV/PT/II/2013, yang berpusat di kampus III terpadu Universitas Muhammadiyah Malang, Jalan Raya Tlogomas 246 Kota Malang, Jawa Timur. Universitas yang berdiri pada tahun 1964 ini berinduk pada organisasi Muhammadiyah dan merupakan perguruan tinggi Muhammadiyah terbesar di Jawa Timur. UMM termasuk dalam jajaran PTS terkemuka di Indonesia bersama UII dan UMY. Oleh karena didominasi warna dinding putih, UMM sering disebut sebagai kampus putih.UMM merupakan salah satu universitas yang tumbuh cepat, sehingga oleh PP Muhammadiyah diberi amanat sebagai perguruan tinggi pembina untuk seluruh PTM (Perguruan Tinggi Muhammadiyah) wilayah Indonesia Timur. Program-program yang didisain dengan cermat menjadikan UMM sebagai "The Real University", yaitu universitas yang benar-benar universitas dalam artian sebagai institusi pendidikan tinggi yang selalu komit dalam mengembangkan Tri Darma Perguruan Tinggi.Pada sekarang ini Universitas Muhammadiyah Malang (UMM) menempati 3 lokasi kampus, yaitu kampus I di Jalan Bandung 1, kampus II di Jalan Bendungan Sutami 188 A dan kampus III di Jalan Raya Tlogomas 246. Kampus satu yang merupakan cikal bakal UMM, dan sekarang ini dikonsentrasikan untuk program Pasca Sarjana. Sedangkan kampus II yang dulu merupakan pusat kegiatan utama , sekarang di konsentrasikan sebagai kampus Fakultas Kedokteran dan Fakultas Ilmu Kesehatan. Sedangkan kampus III sebagai kampus terpadu dijadikan sebagai pusat sari seluruh aktivitas.
sumber : http://id.wikipedia.org/wiki/Universitas_Muhammadiyah_Malang